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Abstract

 

In this paper, we explore the use of multidisciplinary and high-fidelity simulations for multi-objective 

design optimization of a marine hybrid propulsion system with application to a very large crude oil 

carrier (VLCC) tanker. The optimization is achieved by utilizing a process integration and design 

optimization (PIDO) to support multidisciplinary design optimization (MDO). We performed a 

minimum number of simulations to explore the design space through algorithm-guided design-of-

experiments (DoE). Based on those experiments, response surface models (RSMs) were constructed. 

Further, sensitivity and correlation within design parameters and with the design objectives from the 

simulations are simultaneously examined and elucidated. Subsequently, the quality of the RSMs is 

validated using the simulation models. A multi-objective optimization is then carried out by utilizing 

the RSMs rather than the high-fidelity simulation. Standard particle swarm optimization (sPSO) was 

used with the RSMs while a very large number of design variation and alternatives are swiftly examined. 

Remaining work is to test optimal design solutions for their reliability and robustness through sensitivity 

to changes in operational requirements, changes in environmental conditions and imprecision in design 

parameters. 

 

 

1. Introduction  

 

A ship is a complex system in which many designers develop and consider different aspects of the 

system to meet various functional requirements. Traditionally design decisions are made in two 

different levels, that is a system level and a component level. In the system level, often the optimization 

objective is to make the ship as economic as possible, whereas in the component level, the objective is 

to meet the component’s solitary functional requirements within the given constraints. In this paper, we 

hope to shed light on the use of an integrated multidisciplinary simulation-based framework for multi-

objective design optimization of a vessel system performance rather than component based design and 

optimization. These approaches are recently and widely in use within the aerospace and automotive 

industries alike Frenzel, Heiserer et al. (2015) and Van der Auweraer, Donders et al. (2008), with lesser 

usage in the maritime industry where its often discipline specific Liu and Collette (2014) and 

Parsopoulos and Vrahatis (2002). Using a well-established approach from other industries can 

potentially improve design outcomes de Weck, Agte et al. (2007) by simultaneously considering 

different aspects of the system. Therefore, process integration and design optimization (PIDO) tools 

are used to support multidisciplinary design optimization (MDO). In MDO, a metamodel is often 

derived from performing a minimum number of multidisciplinary system simulations guided by smart 

algorithm such as Latin Hypercube Eglajs and Audze (1977) or Factorial Design Box and Hunter (1961) 

through design-of-experiment (DoE). In the system simulation, several domain specific virtual models 

and processes are interlinked in accordance with the design task. In this paper, models include ship 

operational model, metocean models, ship hydrodynamics, propulsion, electrical load and powering 

models to simulate the total system performances. The metamodel can be in the form of a response 

surface model (RSM) Box and Wilson (1992) that is constructed by a polynomial, support vector 

machine (SVM) for supervised machine learning, a neural network, Kriging, etc. Subsequently, multi-

objective optimization is achieved by the utilization of the metamodel and varying design parameters 

with optimization algorithms within some design constraints to achieve certain performance objectives. 

Several optimization algorithms were tested and found to vary in their performance and convergence.  

In this paper, we present an application of MDO using a PIDO platform for the design of a hybrid 
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marine power plant for a VLCC. In the power plant, the main engine drives the propeller shaft as in the 

conventional system, and the power take-in (PTI) / power take-off (PTO) device is used to harvest or 

boost power to the propeller shaft. To maximize the capacity of the PTI/PTO device with minimal 

influence on the electrical power plant, an energy storage system such as battery pack or a super-

capacitor bank is used. The aims of this particular configuration are: (1) to reduce the fuel consumption 

in low load operation by reducing the main engine power without losing extra propulsion power for 

rough weather, and (2) to enhance the dynamic response of the propulsion system, reducing the 

fluctuation of the propeller speed and, thus, the chance of over-speeding. The numerical simulation 

provides the average fuel consumption for the given probabilistic operational conditions from weather 

and speed, and the dynamic response of the system in time-series. The goal of the optimization is to 

find the best configuration of the main components in terms of capacity to achieve the minimum fuel 

consumption. The capacities of the components in question are those for the main engine, the PTI/PTO 

device, the auxiliary engine, and the battery. This paper includes a description of MDO method and 

discusses the applicability and challenges in ship design. Uncertainties related to operational condition 

and system design variables and parameters were examined to achieve the required level of system 

reliability and efficiency. A MDO case study of a tanker operating in adverse condition is presented. 

 

 

2. Process Integration and Design Optimization 

 

Four main objectives behind Process Integration and Design Optimization (PIDO) tools are to create 

an automated design process, design space exploration, design optimization and ultimately design for 

value robustness. In process automation, separate engineering disciplines can be integrated for better 

design performance evaluation and reducing repetitive design tasks, development time, and trail & 

error. Designers can perform and evaluate multiple designs simultaneously by exploiting the rapid 

increase in computational power and parallel processing. Also, explore the design space methodically 

by investigating large numbers of possible design alternatives and employing specialized search 

algorithm on different design combination. Visualize and analyze statistically various design 

parameters relations through sensitivity analysis, screening and intelligent sampling.  

 

 
Fig.1: Diagram explaining the underlying rationale behind PIDO 

 

Results from various simulations are then used in machine-learning or to construct RSMs. These 

models are then cross validated against or validated against few high-fidelity simulations, and then used 

as independent models for design optimization. Optimization is then carried out using global search 

evolutionary algorithm such as (MOGA, sPSO) for the first stage and gradient based algorithm for the 

final stage. Final optimal design configurations are then verified with the high-fidelity simulation.  

 

Most of the aforementioned statistical methods, integration of processes from different disciplines and 

optimization are known in various scientific and engineering disciplines, however they are challenging 

to apply into practical ship design tasks due to difficulties in auto-generation and evaluation of precise 

design alternatives such as hull-form and propeller, or scaling the size of main engine and generators 



 338 

without careful considerations. These difficulties by no means depreciate the value and progress made 

by various tools for modeling and analyzing ship’s subsystems. Furthermore, the nature of ship design 

means that design requirements, objectives and constraints often change during the design process 

based on new observations and results interpretations Andrews (2004) and Gero and Kannengiesser 

(2004). Lastly, there is a level of challenges that arises from communicating data between different 

design disciplines and the nature of the information flow. For instance, there is no specific format or 

approach or boundaries where one subsystem and its requirements and constraint can interact with the 

next subsystem with its objectives and constraints. That being said, theoretically challenges can be 

reformulated into opportunities where constraints can be shared and softened among subsystems or 

turned into objectives. 

 

Essentially PIDO philosophy tries to bring about wider systematic design perspective, to utilize various 

statistical methods as aid tools in the design process, to improve on computational cost through smart 

experimentation, provide more precise models from simulation data with lower uncertainty instead of 

relying exclusively on approximate heuristic models, and finally to enable designers to consider wider 

system boundary at an early design stage. 

 

 
Fig.2: PIDO process follows from design models-constraints (hard/soft)-objectives to formal DoE 

study. RSM and/or supervised machine learning model is then constructed and validated with 

the initial models. Optimization is then carried out using suitable algorithm to examine large 

number of design alternatives. Optimal results are then verified with the initial models and tested 

for their robustness. 

 

3. Simulation Models and Workflow: 

 

The PIDO workflow utilizes machinery models and ship hydrodynamic aspects as proposed in Yum, 

Skjong et al. (2016), Yum, Taskar et al. (2016) as well as ship voyage simulation model for weather 

and transporter capacity. The PIDO workflow is based on Noesis Solutions Optimus software tool. This 

workflow essentially guides the simulation models and their parameters, and extract results for each 

run, then store and re-use knowledge acquired during each simulation including trends and relationships 

that lead to specific solutions.  
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Fig.3:  Simulation workflow that perform the virtual vessel design optimization (Created with Noesis  

           Solutions Optimus software tool) 

 

The vessel model in use based on the well-known KVLCC2 model where vessel particulars can be 

found in the appendix. Hydrodynamic coefficients were computed using the ShipX Veres module from 

SINTEF Ocean, which is using linear strip-theory Salvesen, Tuck et al. (1970) to compute the vessel 

motions. The added resistance is then computed according to the modified version of Gerritsma & 

Beukelmans as presented in Loukakis and Sclavounos (1978). The ship propeller was based on the 

modified propeller design and open water propeller diagrams and wake estimation procedure as 

proposed in Taskar, Yum et al. (2016), Yum, Skjong et al. (2016). Pre-processing simulation is then 

carried out and stored in a database for both regular and irregular waves with Hs (significant wave 

height) and Tp (peak period) according to the metocean model outputs.    

The structure of the machinery and propulsion simulation model is presented in Fig.4, which only 

provides the model structure in the component levels. In addition to the component models, controllers 

such as an engine governor, a governor for PTI/PTO device and a power management system had been 

implemented order to run the dynamic simulations for different operating conditions. Table I shows the 

modeling framework used for the submodels. 

 

 
 

(a) Hybrid propulsion system (b) System model 

Fig.4 Schematic of the hybrid propulsion system and the structure of the simulation model 
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Table I: Modeling framework of the submodels 

Submodel Modeling framework Submodel Modeling framework 

Electrical 

system 

Dynamic model using dq-

frame 

Shaft 

system 

Single rigid-body 

Diesel engine 

system 

Filling and emptying method  

0D phenomenological 

combustion  

Vessel 1D rigid-body 

Calm Water Resistance Curve 

Added Resistance Coefficient 

Battery system Capacitance and resistance 

model 

Propeller Quasi-steady based on propeller 

curve 

Mean wake variation model 

Ventilation model 

 

However, the models had to be modified in order to be used in the design space exploration to overcome 

the two challenges: simulation time and robustness of simulation over various configurations of the 

power plant and operational conditions. 

 

The average simulation time for the hybrid propulsion system in the previous work was typically 10~15 

times slower than real time when the whole system was run as a single simulation on a high-

performance computer. The main reason for the slow computational speed was to include both the 

electrical models and the diesel engine models that have very different time scales. Co-simulation could 

enhance the computational speed but not so drastically. In this regard, we decided to divide the 

simulations into three where the second and third part of the simulation is carried out in sequence. First, 

the vessel transport capacity is simulated for a given logistical network where vessel speed and carrying 

capacity are estimated, then metocean data from hindcast along the sailing route are computed into 

probabilities of occurrence and communicated to the rest of the simulation as an input. The second part 

of the simulation is the mechanical system which includes the coupled hull-propeller-machinery 

system. This is run first and the logged signals from the simulation are provided as inputs to the 

electrical system simulation. The interface between the second and third parts of the simulation is the 

PTI/PTO, which is modeled by a first-order transfer function in the mechanical simulation whereas it 

is modeled by its first principle physics model. The structure of the revised simulation model is 

presented in Fig.5. As a result of changing from the simultaneous simulation to the sequential one, the 

simulation runs approximately 30% faster than real time. Note that the electrical simulation is skipped 

in case that the PTI/PTO device provides enough electricity for the auxiliary loads so that the generators 

do not need to run. 

 

 
Fig.5: The revised structure of the simulation model 

Regarding robustness of the simulation, the capability of the controllers had to be extended to enable 

the various operational modes depending on the power loads. The control objective of the PTI governor 

in the previous work was to regulate the shaft speed with minimum fluctuation for propulsion in waves. 

However, in order to simulate the performance in both the PTI and PTO mode, the mean power load 

on the shaft is to be shared between the main engine and the PTI/PTO device depending on the available 

power and the level of the power load. The control objectives for the PTI/PTO device for different 

powering modes are: 

PTI mode (PME,Max <  P̅Prop): While keeping the shaft speed constant, the device should provide the 

power to the shaft as much as possible so that the main engine does not operate above the torque limit 
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for the given shaft speed.  

PTO mode (PME,Max >  P̅Prop ): While keeping the shaft speed constant, the device should take off 

enough power from the shaft to provide the auxiliary loads. The torque of the main engine should be 

kept within the limit in any case. 

 

It is however difficult to interfere the simulation manually as the number of simulations for the design 

study is too large for that. Introducing switching controllers depending on the mode may lead to 

instability in simulations for many combinations of different parameter sets. In order to tackle this 

challenge, we introduced load limiting droop control for the sharing loads between the main engine and 

the PTI/PTO device. 

 

In general, a droop control is used for sharing the loads between the generators running in parallel. 

When the same droop curve is applied between two powering units, they share the load proportional to 

their rated power. This proportion can be regulated either by changing the slope of the curve or changing 

the reference frequency at no load. Usually the droop curve is defined for the power between 0 and 

100%, but we defined the droop between -50 to 50% as PTI/PTO device can either be powering 

(positive power) or being powered (negative power). The droop curve for the main engine and the 

PTI/PTO device is shown in Fig.6. When the reference speed is given to the governors, it is multiplied 

by the value of the droop curve depending on the load to give the set point to the speed controller. From 

the defined droop curve in Fig.6 for an identical speed reference, PTI/PTO will share the load of 20% 

of its capacity when the main engine is running at 70% load, or -20% of its capacity when the main 

engine is running at 30% load. The corresponding droop values are 0.99 and 1.01, respectively. The 

curve for the PTI/PTO device is flat outside the range because some power should be reserved for 

smoothing the power and speed fluctuations during propulsion in waves. 

 

Furthermore, the proportions of load sharing can be adjusted by increasing or decreasing the speed 

reference value to one of the devices, which has the effect of lifting or lowering the droop curve of the 

device. As the speed reference is increased, the device has to work harder than the other that is 

controlled at the original reference, and vice versa. As shown Fig.6, when the speed reference for 

PTI/PTO is increased by a certain value, 1.5% in this case, the dotted line represents the new set point. 

In this case, while the main engine is running 70% of its power, the PTI/PTO will provide 50% of its 

rated power to the shaft, 30% increase compared to the identical set point in Fig.7. In the opposite case, 

decreasing the reference value by 1.5%, PTI/PTO will take off 50% of its rated power from the shaft 

while the main engine is running at 30%. 

 
Fig.6: Droop curves for the main engine and the  

          PTI/PTO 

 
Fig.7: Adjusting the load sharing proportion by  

              changing the speed 

Using the principle above, the load sharing of the main engine and PTI/PTO can be controlled by 

adjusting the speed reference to the governor for PTI/PTO. This is achieved by the controller presented 
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in Fig.8. PTI load control is the only active controller that regulates the load sharing. In case that 

maximum allowable engine load smaller than the average propulsion load (PME,Max <  P̅Prop), which 

will be represented by the engine governor output greater than 1, PTI load control will give negative 

value so that the speed reference for the PTI/PTO device will increase, thereby, increasing the power 

load. In the other case, PME,Max >  P̅Prop, the speed reference will decrease,  reducing the power load 

and entering PTO mode eventually. However, the average power production from PTO mode should 

not exceed the power demand of the auxiliary loads. Therefore, if the average power production is 

greater than a certain portion of the auxiliary power demand, the PTO load controller becomes active 

which controls the power load of PTO to match the auxiliary power demand while the PTI load 

controller becomes inactive. The transition from PTI load control to PTO load control happens through 

the hysteresis type of switching so that they do not swing back and forth. This controller proved to be 

robust for all the variations of parameters and the operational conditions during the simulation. 

 
Fig.8: Schematic of PTI/PTO load sharing control 

 

In addition to the operational variations in the simulation, the simulation models also have to cope with 

variations of the parameters in a large range for the design study. As most of the models are based on 

the first principles, there are large sets of parameters to be changed along the design parameters. It will 

be impossible to validate the models for each set of parameters in the process of performing design of 

experiments or optimization. To resolve this challenge, we decided to use the well-validated model and 

the parameters as is, and convert the power input/outputs only. For example, the interface with between 

the shaft model and the main engine model includes the information of the shaft and the torque. We 

assume the shaft speed will not be scaled as the propeller design remains the same, but the torque will 

be according to the ratio of the rated power of the new design to the original so that the power is properly 

scaled. The same will be applied for the gensets, batteries and PTI/PTO device.  

 

 

4. Case Study: Environmental condition, operational profile and design constraints 

 

4.1 Objective 

 
This demonstration case based on the well-known KVLCC2 operating in adverse weather condition. 

The vessel’s particulars, propeller characteristics and the machinery are provided in Yum, Skjong et al. 

(2016), Yum, Taskar et al. (2016). The objective of the optimization study is to find the set of the design 

parameters for capacity of the machineries that gives the minimum fuel consumption per miles for the 

given probabilistic operational scenarios (weather and speed) are calculated. 

 

The particular values are for the nominal design where the parameters in Table II. will vary for the 

design space exploration and optimization. In addition to the high and low limit for the parameters, it 

must meet other constraints in order to ensure enough power for the propulsion and the auxiliary power.  

 

PPT + PME ≥ PPropReq 
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PGen ≥
(PPropReq − PME + PAux)

2ηGen

 

where, PPropReq is a minimum power requirement for the vessel to survive under harsh weather and PAux 

is the auxiliary power load. In this study, they are assumed to be 25MW and 1MW, respectively. 

 

Table II: Design parameters and their constraints 

 Description Range Remark 

PPT Rated power of the PTI/PTO 0 ~ 8MW The same rate for PTI and PTO 

PME Rated power of the diesel engine 17.5 ~ 25MW  

PBatt Rated power of the battery 0 ~ 5 MW The same rate for charging and 

discharging 

PGen Rated power of the genset 1.15 ~ 4.8 MW  

 
4.2 Operational profile 

 

An evaluation of vessel speed to meet transport capacity and sailing through calm-to-rough weather 

conditions in the Northern Atlantic Ocean were performed with event-based voyage simulation. Results 

from this model were expressed in the form of probability distributions for equivalent Hs and vessel 

speed. The environmental conditions are stochastically independent while the vessel speed is a 

stochastic parameter influenced by markets from supply and demand between portal cities, and 

influenced by the environmental condition during voyage where voluntary speed reduction deemed 

necessary.  

The probability of the equivalent wave condition along the sailing route P(W) is stochastically 

independent based on sample mean, rather than population mean, from hindcast open source weather 

data. Rationally, the vessel operating speed is a conditional probability. For a better speed and transport 

capacity estimation the vessel’s maximum possible attainable speed can be pre-determined for a given 

weather condition and formulated in the below equation considering involuntary speed reduction from 

Table 5 where Tp is the peak wave period and Hs is the significant wave height. 

 

𝑃(𝑉 ∩ 𝑊) = 𝑃(𝑉|W)𝑃(𝑊)         (1) 

 
Probabilistic operational profiles for vessel speeds (9, 11, 13 and 15 kts) and encountered environmental 

conditions (0, 1, 2, 3 and 4 m) for the sailing route were presented in 3 weather scenarios and 4 speeds 

as shown in Tables III and IV. 

 

Table III: Five weather conditions with different 

frequency of occurrence from hindcast data along 

the sailing route. 
 

Hs Scenario 1 Scenario 3 Scenario 3 

0 m 5% 5% 5% 

1 m 10% 10% 12% 

2 m 10% 20% 45% 

3 m 55% 55% 28% 

4 m 20% 10% 10% 

Table IV: Combination of speeds with their 

frequency of occurrence to satisfy transport 

requirement. 
 

Speed [kts] Frequency Speed 

9 15% 

11 50% 

13 20% 

15 15% 

 

Table V: Maximum attainable speed based on ship hydrodynamic calculation for different Hs & Tp. 

Hs|Tp 5.66 8.00 9.80 11.32 12.65 13.86 14.97 16.01 16.98 17.90 

1 14.97 14.96 14.96 14.95 0.00 0.00 0.00 0.00 0.00 0.00 

2 14.99 14.96 14.90 14.57 14.45 14.35 0.00 0.00 0.00 0.00 

3 0.00 14.54 13.47 12.52 12.33 12.09 11.88 11.97 0.00 0.00 

4 0.00 0.00 0.00 9.63 9.25 8.84 8.54 8.85 9.15 9.44 

5 0.00 0.00 0.00 0.00 0.00 4.47 4.42 5.04 5.59 6.37 
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4.3 Design of Experiment (DoE) 

 

Design of experiment (DoE) was performed for each discrete operational point (combination of speeds 

and weather conditions) by sampling the list of design parameters from Table 2 with Latin Hyper Cube 

Sampling technique. A total of 216 near-random experiments were produced for each operating point 

to explore the entire design space. Each evaluation of design combination is independent and therefore 

possible to carry out the simulation in parallel. In the DoE, we aimed at finding the influence of design 

parameters (inputs to the simulation) at the output response in terms of fuel consumption, torque and 

RPM fluctuation), which are the most dominant design parameters and at which condition, and finally 

how to predict outputs based on any set of design inputs. Correlation scatter matrices and bubble plots 

as presented later in results sections are used to screen out the least important design parameters and 

thus to focus the optimization resources on the most important parameters. 

 

4.3.1 Response Surface Model 

Using the results from LHC, a response surface model for each output is constructed. We used support 

vector machines (SVM) as a regression function that maps the inputs of design parameters to the output  

Brereton and Lloyd (2010). While building the SVM models, it was found that the number of generators 

in operation causes some of our key outputs to be discontinuous. Therefore, the number of generators 

running that is an output of the simulation should be used as an input to estimate these outputs. 

Therefore, two layers of SVMs are used. Support Vector Machine classification (SVC) model was 

constructed to classify whether the inputs result in 0, 1 or 2 gensets in operation. Then a Support Vector 

Machine for regression (SVR) model was constructed to perform regression analysis and predict values 

of the continuous variables. The aim of this combined SVM is to provide a good prediction of fuel 

consumption per mile (SFCPM) for any combination of PME, PPT, PGen and PBatt as shown in Fig.9. 

 
Fig.9: Schematic diagram for 2 levels SVC and SVR models constructed after the DoE study 

 
Bayesian based optimization algorithm was used for training of the SVM parameters to get the best fit 

of the model. Lastly, cross-validation was performed using the dataset that is not used in the training in 

order to validate the SVMs for its generality. Fig.10, (A, B and C) show strong agreement between 

predicted SFCPM and computed (Reference) SFCPM from 3 different scenarios of weather condition 

and vessel speed. 

   
(a) Vs 11kts, Hs 0m (b) Vs 15kts, Hs 2m (a) Vs 11kts, Hs 4m 

Fig.10: Validation results from 3 randomly selected weather and speed scenarios 
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4.4 Study Scenarios 

 

The main objective function of this case is to reduce the overall fuel consumption per miles for the 

given operational and weather conditions while taking into account the vessel dynamic response and 

feasibility of the machinery configuration. The focus was on finding the best configuration of the main 

engine, the PTI/PTO device, the auxiliary engine, and the battery where average fuel consumption per 

nautical mile for the given probabilistic operational scenarios (weather and speed) becomes minimum. 

The below equation of the objective function is used for consideration of the weather and sailing speed 

on the vessel’s fuel consumption per mile. 

 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  ∑ 𝑃𝑣,𝑖

𝑛

𝑖=1
. ∑ 𝑃𝑤,𝑗

𝑚

𝑗=1
. 𝑆𝐹𝐶 𝑝𝑒𝑟 𝑚𝑖𝑙𝑒 (𝑖,𝑗) 

Where: 

𝑃𝑣 is the probability of the vessel sailing at particular speed. 

𝑃𝑤 is the probability of the vessel encountering particular weather condition. 

 
A base vessel was provided with conventional propulsion and powering systems. An optimization 

problem is formulated based on the 3 scenarios as given in Fig.11. A comparison based on attainable 

speed and wave height was made, and therefore the objective function can be formulated with the 

assumption of two stochastically independent probabilities for the same attainable speeds and 

encountered wave height. 

 

 

   
Case 1 Case 2 Case 3 

Fig.11: 3 different probabilistic speed and wave height scenarios computed from voyage simulation at  

             the sailing route in Northern Atlantic.  Reference data are in Tables III and IV. 

 

Combined optimization algorithms were used where global search algorithm finds the global minima, 

this was achieved using particle swarm optimization (PSO), and then local search was performed with 

Gradient Descent method. Both algorithms have their own advantage in finding the optimal solution 

and their own usage and convergence requirement. It was noted that PSO can find global solution but 

had difficulties in finding local minima. Gradient descent on the other hand was able to find only local 

minima and converge rather fast, therefore it required the assistance of other algorithm or multiple 

starting points in order to find global optimal solution. 

 

 

5. Results and Discussion 

 
In the first section of the results, the result from the simulations with various sets of design parameters 

are presented. 216 design sets were sampled for each condition of 20 combined cases of weather and 

speeds and simulated using the models presented in section 3. From the 20 cases a single correlation 

matrix is presented for a selected weather condition and operational speed (Hs = 1m and Vs = 15knt) 

as shown in Fig.12. Correlation matrices are used to find relationships between indirectly related design 

parameters and objectives. From Fig.12, it is evident that some parameters are highly correlated (+/-) 

while some are not. Many interesting hypothesis can be derived, for instance, SFCPM (kg/m) shows 

strong correlation with most design parameters and outputs with exception of PBatt. This is vastly due 
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to batteries are used for reserved power storage and damping speed fluctuation rather than fuel saving 

per se. Fuel reduction due to running the main engine at a more stable load is negligible in these 

simulations. As the value of SFCPM decreases, propulsion efficiency, PME increases with negative 

slope relationship. Also, it can be observed that SFCPM has discontinuities with all inputs and outputs 

due to switching between having a single generator and not having a generator in operation (PTO 

mode). 

 
Fig.12. Scatter and correlation matrix for speed of 15 kts and Hs 1 m, generated from 216 high fidelity 

parallel simulations. Each box contain scatter which represents corresponding values (ex-

perimental set) between 2 parameters while the numerical values within the boxes represent 

the correlation coefficient of the two parameters calculated from the experimental set. 

 

Further data visualization and analysis was performed on combination of design parameters with the 

system dynamic response and the vessel fuel consumption as shown in Fig.13. For this investigation, 

two sets of speeds at one weather condition was chosen [Vs 15 & 11 kts, Hs 1m]. This is also associated 

with discontinuities in experimental results in Fig.13 [A & C]. In these cases, smaller main engine size 

is associated with higher SFCPM and lower RPM fluctuation. With reduction in vessel speed for the 

same environmental condition [B & D], results indicate that RPM fluctuation is rather constant for 

different values of PME and PGen, unless PBatt is substantially reduced (small bubbles). Also, for this 

speed case and weather condition, fuel consumption is solely depending on PME. Note that the slopes 

for SFCPM for different speeds [C & D] are opposing each other. This is mainly because of the shape 

of the fuel consumption curve and the difference in the percentage load in two cases. In [C], the required 

propulsion power is higher than the main engines are highly loaded where the fuel consumption curve 

has positive slope. On the other hand, the required power is so low that the engine is loaded where the 

slope of fuel curve is negative. We can infer that the efficiency of the main engine is a main contributor 

to the overall system efficiency in a given ship design and the operation condition. 
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PBatt has rather low correlation values and does not exhibit any relation in the scatter plots with all 

important design parameters and objectives for this particular operational scenario. This means that it 

is safe to excluded PBatt from further parameter variation. 

 

A) [Vs 15 kts, Hs 1m] 

 

B) [Vs 11 kts, Hs 1m] 

 

 

C) [Vs 15 kts, Hs 1m] D) [Vs 11 kts, Hs 1m] 

Fig.13: Bubble plots show relationship between 3 design parameters and 1 design objective. Parameters  

            are SFCPM, PMe, PBat and generator rating. 

 

Lastly, optimization results from the combined weather condition and vessel speed are presented in 

Table 6. Counterintuitively that case 3 where the vessel experience less severe weather and sails at the 

same speed benefits the most from the optimization. After the optimization, the obtained design 

parameters were verified against the high-fidelity simulation as presented in Fig.14. Results shows 

good agreement between higher fidelity simulation and trained SVM models. 

Table VI. Results for stochastic optimization of machinery configuration based on the 3 scenarios 

Scenario 

# 

 

Base 

Results 

[kg/m] 

HFS 

 

[kg/m] 

SVM  

Optimization 

[kg/m] 

Difference  

 

[%] 

PME  

 

[MW] 

PPTI 

 

[MW] 

PGen 

 

[MW] 

PBatt 

 

[MW] 

1 0.1641 0.1631 0.1627 0.6094 24.93 1.884 1.802 1.079 

2 0.1500 0.1491 0.1492 0.6000 24.41 2.375 1.641 1.266 

3 0.1352 0.1334 0.1339 1.331 23.93 3.554 1.239 2.606 
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(a) Scenario 1 (b) Scenario 2 (c) Scenario 3 

Fig.14: SVM prediction Vs simulation where SFCPM Vs Hs are displaced for different speeds. Results  

             indicate very good agreement. 

 

From optimization results performed on the metamodels in Table VI. for three weather scenarios, it was 

noted that scenario 3 has the highest potential of benefiting from finding the right design configuration 

with reasonable values of potential fuel savings. Also, this indicates that the trained metamodel is able 

to capture the behavior and fuel consumption of a complex system as a whole. Next stage is to include 

more degrees of freedom optimization routine from the vessel’s hydrodynamic aspects such as 

propulsion system. 

 

 

6. Conclusion 

 

The study was set to examine the use of PIDO for hybrid marine power system design. Results indicate 

great potential to create a rapid design generation tool for testing multiple design alternative, sharing 

design constraints across subsystems and system boundaries, understanding parameters relationships 

between various subsystems and ultimately system level design improvements. However, unlike other 

aspects in ship design, hybrid marine power plant simulation is relatively new topic where tools are still 

developing. Therefore, after long period of testing the simulation tools for their robustness to 

optimization, eventually the right balance was found. Design automation and optimization has 

demonstrated great capability at finding many design alternatives, but well experienced engineers are 

needed to evaluate results as optimization algorithms work in a highly mechanistic fashion. Therefore, 

a combination of robust simulation tools and domain experience will assist greatly when using PIDO. 

Overall, DoE and RSMs demonstrated great capability of handling complex designs, decoding 

relationships between parameters, reducing computational cost from high fidelity multidomain models 

without compromising solution accuracy. Despite the design problem being highly constrained, it was 

possible to achieve relatively reasonable fuel saving and providing an understanding of the speed 

fluctuation in adverse weather conditions. Remaining work is to expand the optimization scope by 

including other design parameters from ship hydrodynamics and vessel operation. 
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Annex A 

Particulars of the Case Vessel and the Propulsion Plant 

Propeller Geometry 

Diameter (D) (m) 9.86 

No of blades 4 

Hub diameter (m) 1.53 

Rotational speed (RPM) 95 

𝑨𝒆 / 𝑨𝟎 0.431 

(P/D)mean 0.47 

Skew (°) 21.15 

Rake (°) 0 
 

Particulars of the main engine 

Model Wartsila 8RT-

flex68D 

Bore (mm) 680 

Rated MCR (kW) 25,040 

Speed at rated power 

(RPM) 

95 

Stroke (mm) 2720 

Mean Effective Pressure 

(bar) 

20 

Number of cylinders 8 

Turbocharger 2 x ABB A175-

L35 
 

Particulars of the electrical power plant 

Number of generators 2 

Capacity of each generator 

(kVA) 

2000 

Power factor of generator 0.9 

RMS line-to-line 

voltage(V) 

690 

Number of switchboard 2 

Mean hotel load during 

voyage (kW) 

1000 

 
Fig.A-1: BSFC of the main engine 

Ship Particulars 

Length beween 

perpendiculars (m) 

320.0 

Length at water line (m) 325.5 

Breadth at water line (m) 58.0 

Depth (m) 30.0 

Draft (m) 20.8 

Displacement (m3) 312622 

Block coefficient (CB) 0.8098 

Design Speed (m/s) 7.97 

 

Specifications of the battery system 

Energy capacity (MWh) 1.0 

Maximum discharging 

current (kA) 

5.6 

Maximum charging current 

(kA) 

5.6 

Nominal voltage (V) 360 

 

 
Fig.A-2: Propeller curve for the case vessel 

 
Fig.A-3: Resistance curve for the case vessel 

  

 


